
Introduction to Bayesian Inference

Chase Joyner

Mathematical Sciences

June 3, 2014

1 Introduction

Bayesian inference is a method in which Baye’s rule is primarily used in order to obtain

a posterior distribution, and this distribution can provide all information on unknown

parameters of interest. The benefit of using Bayesian methods rather than Frequentist

methods is that instead of obtaining just point estimates and confidence intervals like

the Frequentist, a Bayesian obtains an entire distribution for the parameter we wish

to gain inference on. For example, suppose you flip a fair coin 100 times and record

64 heads and 36 tails. Would you begin to consider the coin to be bias? As you can

see, using a Frequentist approach requires larger sample sizes to obtain a long-run

frequency. This leads us towards a Bayesian approach, where we can include some

prior knowledge of the coin to assess its fairness.

2 Bayesian Inference

So how do we gain inference on unknown parameter(s) of interest? The goal is to obtain

a posterior distribution. Bayesian techniques use prior information on the parameter

to specify a prior distribution, such as p(θ), and a likelihood function specified by the

data, such as p(y|θ). After obtaining these requirements, we can apply Baye’s rule to
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formulate a posterior distribution as follows [1, p. 2]

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

∝ p(y|θ)p(θ)

Generally, we can simplify the work by finding the proportional distribution to the

posterior, and then integrating over the support while setting equal to 1 to find the

normalizing constant. A lot of times the posterior distribution p(θ|y) is not of a known

form, so it is difficult to gain inference on the parameters using this unknown density;

however, if we specify a conjugate prior distribution to the likelihood function, it will

ensure a recognizable posterior distribution.

Conjugate Priors

In Bayesian analysis, a conjugate prior for the likelihood function is when the prior

distribution and the posterior distribution are both of the same family [1, p. 38]. This

result is ideal as it guarantees a known posterior form.

Beta-Binomial

Suppose we have independent and identically distributed (iid) data that follows a

Bin(1, θ), this is our likelihood function. If we use a Beta prior, then we will obtain a

Beta posterior distribution.

prior: p(θ) =
γ(a+ b)

γ(a)γ(b)
θa−1(1− θ)b−1

likelihood: p(y|θ) =
(
n
y

)
θy(1− θ)n−y

p(θ|y) ∝ p(y|θ)p(θ)

∝ θy(1− θ)n−yθa−1(1− θ)b−1

= θ(a+y)−1(1− θ)(b+n−y)−1

Notice the posterior distribution is a Beta, indicating θ|y ∼ Beta(a + y, b + n − y).

Therefore, the conjugate prior for the Binomial likelihood is a Beta distribution.

2



Normal-Normal

Assume we have n iid samples from a N(θ, σ2), where σ2 is known. Let the prior

distribution for θ ∼ N(µ, σ2
0).

p(θ) =
1√

2πσ2
0

exp{− 1

2σ2
0

(θ − µ)2}

p(y|θ) =
n∏
i=1

1√
2πσ2

exp{− 1

2σ2
(yi − θ)2}

∝ exp{− 1

2σ2

n∑
i=1

(yi − θ)2}

p(θ|y) ∝ p(y|θ)p(θ)

∝ exp{− 1

2σ2

n∑
i=1

(yi − θ)2}exp{− 1

2σ2
0

(θ − µ)2}

∝ exp{− 1

2σ2σ2
0

[θ2(2σ2
0n+ 2σ2) + θ(−2σ2

02
n∑
i=1

yi − 2σ22µ)]}

= exp

{
− 1

2 1
1

σ2
o

+ n
σ2

(
θ −

µ
σ2

0
+ nȳ

σ2

1
σ2

0
+ n

σ2

)2}

Therefore, the posterior θ|y ∼ N

( µ

σ2
0

+nȳ

σ2

1

σ2
0

+ n
σ2
, 1

1

σ2
o

+ n
σ2

)
. You can refer to the appendix for

a complete derivation.

Gamma-Poisson

Another example for conjugate priors is the Gamma prior distribution for the Poisson

likelihood function. If our data follows a Poisson distribution and we specify a Gamma

prior distribution, then our posterior distribution will also be Gamma. This is shown

below:

prior: p(θ) =
βα

γ(α)
θα−1e−βθ

likelihood: p(y|θ) ∝ θ

n∑
i=1

yi
e−nθ

3



p(θ|y) ∝ p(y|θ)p(θ)

∝ θ

n∑
i=1

yi
e−nθθα−1e−βθ

= θ
(α+

n∑
i=1

yi)−1
e−(n+β)θ

Here we see the posterior is Gamma(α +
n∑
i=1

yi, n+ β).

3 Two-Parameter Models

So far we have looked at Bayesian inference in one-parameter models, but now let

us look at how to conduct inference in two-parameter models. If φ is a vector of

parameters, then we simply apply the same technique as in the one-parameter case:

p(φ|y) =
p(y|φ)p(φ)

p(y)

∝ p(y|φ)p(φ)

Now us look at how to gain joint inference on the mean and the variance in a Normal

model. Note, conjugate priors are also applicable in two-parameter models.

Joint Inference in a Normal Model

Suppose we are interested in joint inference on the mean θ and the variance σ2. Similar

to an example shown in [1, p. 74], the priors and the likelihood function are identified

as:

yi ∼ N(θ, σ2)

θ|σ2 ∼ N(µ0,
σ2

κ0
)

σ2 ∼ IG(ν0

2
, ν0

2
σ2

0)

Note that we have two priors instead of a single, joint prior. This is simply because of

the fact that p(θ, σ2) = p(θ|σ2)p(σ2). However, with these priors and this likelihood,

the underlying joint posterior distribution is not of a known form and renders sampling
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difficult. This leads us towards an approach called Gibbs Sampling, and with this we

can approximate the posterior distribution empirically.

Gibbs Sampling

The idea behind Gibbs Sampling is to generate a sequence of samples of the unknown

parameters, using the full conditional posterior distributions of each parameter of in-

terest. To calculate the full conditional posterior distributions, we simply apply the

same technique as in the one-parameter models [1, p. 93]

p(θ|σ2,y) ∝ p(y|θ, σ2)p(θ|σ2) (1)

p(σ2|θ,y) ∝ p(y|θ, σ2)p(σ2|θ) (2)

These posterior distributions are considered full conditional posterior distributions for

θ and σ2, respectively. This is because each distribution is for the parameter of interest,

given everything else. With these, we are able to estimate the joint posterior distri-

bution p(θ, σ2|y) by generating a dependent sequence of parameters. Given a starting

point such as σ2(0), sample as follows [1, p. 94]

θ(1) ∼ p(θ|σ2(0),y)

σ2(1) ∼ p(σ2|θ(1),y)

Generally, this process takes the form of:

θ(t+1) ∼ p(θ|σ2(t),y)

σ2(t+1) ∼ p(σ2|θ(t+1),y)

And let us update our parameter vector φ at each iteration, where φt+1 = (θ(t+1), σ2(t+1))

such that we obtain:

φ = {φ1, φ2, ..., φn}

Gibbs sampling is extremely useful as it allows an approximation for a finite sample n,

and in fact as n→∞, these samples form a joint sampling distribution that approaches

the joint posterior distribution of interest.
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Furthermore, according to the law of large numbers, with these samples we are able to

induce properties such as [1, p. 54]

E[θ|y] = 1
n

n∑
i=1

θ(i) as n→∞

E[σ2|y] = 1
n

n∑
i=1

σ2(i) as n→∞

But what if we also cannot obtain the full conditionals proposed in equations (1) and

(2) above? If this is the case, then Gibbs Sampling cannot be used and we must take

another approach.

Metropolis-Hastings

Suppose that we have a starting position of s initial values for our parameters, such

as {θ(1), ..., θ(s)} and {σ2(1), ..., σ2(s)}. If we can obtain a new value θ(∗) and σ2(∗), then

by intuition these new values should be included in our set if the densities are greater

than or equal to the densities of θ(s) and σ2(s). However, if the densities are not greater

than or equal to, then we should accept θ(∗) and σ(∗) with some probability. Using this

basic idea, we compute the acceptance ratio [1, p. 174]

r =
p(θ(∗)|y)

p(θ(s)|y)
=
p(y|θ(∗))p(θ(∗))

p(y)

p(y)

p(y|θ(s))p(θ(s))
=
p(y|θ(∗))p(θ(∗))

p(y|θ(s))p(θ(s))

Here, p(·) refers to the density proposed by the distribution. After computing r, set

θ(s+1) =

θ
(∗) if r ≥ 1

θ(∗) or θ(s) with probability r and 1− r respectively, r < 1

The second line of the piecewise function above can be achieved by simply sampling

u ∼ Ber(r) and setting θ(s+1) = θ(∗) if u = 1, θ(s+1) = θ(s) otherwise.
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Now how do we compute the new value θ(∗)? Metropolis proposed to sample the new

value from a symmetric distribution around the previous value, namely J(θ|θ(s)). Some

simple examples are

θ(∗) ∼ uniform(θ(s) − δ,θ(s) + δ) = J(θ|θ(s))

θ(∗) ∼ normal(θ(s), δ2) = J(θ|θ(s))

where the choice of δ determines how efficient the algorithm runs. Refer to [1, p. 179]

for an explanation on how to choose an efficient δ. As a result from this Metropolis

method came the Metropolis-Hastings algorithm, which proposed that the sampling

distribution for θ(∗) can be a symmetric distribution as described above, the full con-

ditional distributions (Gibbs Sampling), or some other distribution.

4 Conclusion

Bayesian techniques are extremely useful and have benefits over other methods. Bayesian

methods allows the inclusion of prior beliefs, and these prior beliefs may vary from per-

son to person. If you have this prior belief that the coin is fair, then you should include

this. As in the example during the introduction, even though it appears that the mean

number of heads is 64 out of 100, we still want to use our belief that the coin is fair.

Finally, unlike Frequentists who obtain only point estimates, Bayesian inference results

in an entire distribution for the parameters of interest.
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Appendix A

p(θ) =
1√

2πσ2
0

exp{− 1

2σ2
0

(θ − µ)2}

p(y|θ) =
n∏
i=1

1√
2πσ2

exp{− 1

2σ2
(yi − θ)2}

∝ exp{− 1

2σ2

n∑
i=1

(yi − θ)2}

p(θ|y) ∝ p(y|θ)p(θ)

∝ exp{− 1

2σ2

n∑
i=1

(yi − θ)2}exp{− 1

2σ2
0

(θ − µ)2}

= exp{− 1

2σ2

n∑
i=1

(yi − θ)2 − 1

2σ2
0

(θ − µ)2}

= exp{− 1

2σ2
(
n∑
i=1

y2
i − 2θ

n∑
i=1

yi + nθ2)− 1

2σ2
0

(θ2 − 2θµ+ µ2)}

∝ exp{− 1

2σ2
(nθ2 − 2θ

n∑
i=1

yi)−
1

2σ2
0

(θ2 − 2θµ)}

= exp{− 1

2σ2σ2
0

[2σ2
0(nθ2 − 2θ

n∑
i=1

yi) + 2σ2(θ2 − 2θµ)]}

= exp{− 1

2σ2σ2
0

[θ2(2σ2
0n+ 2σ2) + θ(−2σ2

02
n∑
i=1

yi − 2σ22µ)]}

= exp

{
− 2σ2

0n+ 2σ2

2σ22σ2
0

[
θ2 − 2θ

(2σ2
0

n∑
i=1

yi + 2σ2µ

2σ2
0n+ 2σ2

)]}

∝ exp

{
− 2σ2

0n+ 2σ2

2σ22σ2
0

(
θ −

2σ2
0

n∑
i=1

yi + 2σ2µ

2σ2
0n+ 2σ2

)2}

= exp

{
− σ2

0n+ σ2

2σ2σ2
0

(
θ −

σ2
0

n∑
i=1

yi + σ2µ

σ2
0n+ σ2

)2}
= exp

{
− 1

2 1
1

σ2
o

+ n
σ2

(
θ −

µ
σ2

0
+ nȳ

σ2

1
σ2

0
+ n

σ2

)2}
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